传感器技术为您的焊接操作提供了很多可能性。有些成本低廉,功能有限,而另一些则需要大量投资和周到的设计-它最大的好处是节省使用过程中的成本。
触控感应
机器人在焊嘴或焊丝上施加少量电压的机械式感应。它们的功能相同,唯一的区别是每种方法将数据转换为机械手的方式。通过电压,机器人将到达工作材料,接触它,会发生短路,然后机器人将记录该记录值所在的位置,并告诉机器人表面在哪里。大多数情况下,每个焊缝至少需要接触两次才能找到位置-垂直和水平表面。机器人将连接这些搜索向量并在焊缝处进行三角剖分。在角部或外侧边缘的焊缝上,通常需要第三次搜寻机器人才能获得所有正确的位置,以使机器人能够找到并“跟踪”焊缝。
但是,接触感应确实有一些限制,这使其成为焊缝搜寻和焊缝跟踪的补救性解决方案。首先是接触感应是一个缓慢的过程,每个搜索向量会增加3到5秒。因此,如果您在2D零件上进行接触感应,则可能会增加6至10秒的焊接周期,而如果您在3D零件上进行接触感应,则每次电弧开始和结束的周期时间最多会增加15秒。
通过电弧跟踪
通过电弧跟踪,这是您将应用接触感应的第二阶段。接触感应后,您可以找到弧的起点和终点,然后应用通过电弧跟踪进行焊接过程中的跟踪。电弧跟踪可以在关节的Z和Y轴上跟踪,非常适合于较厚的材料。
电弧跟踪需要摆动的焊接过程。当焊丝从接头的一侧过渡到另一侧时,电流正在变化。发生这种情况的原因是,焊丝的伸出量随TCP到工作距离的变化而减小。这使机器人可以解析电流的变化并调整示教路径,从而在焊缝中保持适当的焊接位置。
激光焊缝跟踪
激光焊缝跟踪系统也称为光学或视觉焊缝跟踪,它使用激光三角测量法作为实现原理。借助正确的软件包,激光跟踪可以在专机自动化和机器人系统上使用。
从概念上讲,激光焊缝跟踪是指将激光束从设备中射出,照射在被测物体表面。从表面反射,然后反射回传感器中,然后传感器获得光束照射的位置。因此,通过激光焊缝跟踪系统可以知道激光发射器与相机上传感器之间的距离,从而可以对反弹的材料的位置进行三角测量。
从本质上讲,您可以获得焊缝的Z(高度)和Y(交叉)的图像,因此传感器知道其反馈的图像是距传感器射线的X(距离)尺寸,并且它的特征是在整个Y方向的视野中,选择是正还是负。
江南app体育下载官网激光焊缝跟踪器采用智能实时焊缝跟踪技术、非接触式跟踪模式,通过传感器测量焊缝偏移,引导并控制焊枪定位,避免因工件位置偏差、热变形等造成的焊接缺陷,提高生产效率及产品质量。
可一键解决如检测范围、检测能力以及焊接过程中的常见问题;可实现实时纠正焊缝偏差,智能实时跟踪,引导焊枪自动焊接;可解决焊缝偏差带来的问题,确保焊缝成型美观牢固。